Search for Chiral Effects with PID

Gang Wang (UCLA)

5-9 October 2015 Central China Normal University

1

Outline

Motivation

- Experimental Results
 - Chiral Magnetic Effect (CME)
 - Chiral Magnetic Wave (CMW) ----
 - Chiral Vortical Effect (CVE)

Phys. Rev. Lett. 103(2009)251601 Phys. Rev. C 81(2010)54908 Phys. Rev. C 88(2013)64911 Phys. Rev. C 89(2014)44908 Phys. Rev. Lett 113(2014)052302 Phys. Rev. Lett 110(2013)012301

Phys. Rev. Lett 114(2015)252302 PRL Editors' Suggestion

Outlook

Chiral Magnetic Effect

Chiral Magnetic Effect (CME): finite chiral charge density induces an electric current along external magnetic field.

 $j_V = \frac{N_c e}{2\pi^2} \mu_A B \Rightarrow$ electric charge separation along *B* field

D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nuclear Physics A 803, 227 (2008)

Chiral Vortical Effect

Chiral Magnetic Effect vs Chiral Vortical Effect

Chirality Imbalance (μ_A) Magnetic Field $(\omega \mu_e)$ Fluid Vorticity $(\omega \mu_B)$ \downarrow Electric Charge (j_e) Baryon Number (j_B) D. Kharzeev, D. T. Son, PRL 106 (2011) 062301

 $\langle \cos(\phi_{\mathbf{A}} + \phi_{\mathbf{p}} - 2\Psi_{RP}) \rangle$

correlate Λ -p to search for the Chiral Vortical Effect

Charge separation: h[±]-h[±]

Phys. Rev. Lett. 103(2009)251601; Phys. Rev. C 81(2010)54908; Phys. Rev. C 88 (2013) 64911

• $\gamma_{os} > \gamma_{ss}$, consistent with CME expectation

• what if we replace one of the h[±] with a neutral particle?

K⁰_S-hadron correlation

- K⁰_S-h⁻ consistent with K⁰_S-h⁺: no charge-dependence
- the separation observed in h[±]-h[±] is due to electric charge

Λ-hadron correlation

• Λ -h[±] also show no charge-dependent separation (protons and antiprotons have been excluded from h[±])

- s quarks participate in the chiral dynamics in a similar way as u/d
- Λ -h[±] also provides a baseline for Λ -p correlations

Λ-p correlation

- same baryon number: Λp and $\overline{\Lambda}\overline{p}$
- opposite baryon number: $\Lambda \overline{p}$ and $\overline{\Lambda} p$

* "same B" < "oppo B" in mid-central and peripheral collisions: consistent with the CVE expectation.

p-p correlation

- (anti)protons have both electric and baryonic charge
- ✤ p-p correlations are supposed to contain both CME and CVE
- ✤ largest charge separation signal ever seen!
- worry about p-p contamination in h[±]-h[±]

p-π correlation

* p- π correlations are supposed to contain only CME

* charge separation signal similar between $p-\pi$ and $h^{\pm}-h^{\pm}$ (contribution from Λ decay estimated to be negligible)

* suggest similar underlying physics (CME) for p-π and h[±]-h[±], and small p-p contamination in h[±]-h[±]

p-K⁰_S correlation

- ✤ K⁰_S have neither electric nor baryonic charge
- ✤ p-K⁰_S are supposed to contain no CME or CVE
- consistent with no charge separation
- need more statistics to be more conclusive

Hierarchical structure

- ✤ a clear hierarchical structure
- qualitatively meet the expectation of CME and CVE
- further study: more PID, flow bg and comparison with theory

CMW

Observable

Then $\pi^- v_2$ should have a positive slope as a function of A_{ch} , and $\pi^+ v_2$ should have a negative slope with the same magnitude.

Observed charge asymmetry

• N⁺ (N⁻) is the number of positive (negative) particles within $|\eta| < 1$.

- The distribution was divided into 5 bins, with roughly equal counts.
- Tracking efficiency was corrected with help of HIIJNG.

v₂ vs A_{ch}

- Clear A_{ch} dependence of $v_2\{2\}$
- $v_2(A_{ch})$ slopes for π^{\pm} :
 - opposite sign
 - similar magnitude

$$v_2^{\pm} = v_2^{\text{base}} \mp \left(\frac{q_e}{\overline{\rho}_e}\right) A_{ch}$$

• Δv_2 vs A_{ch} may have a non-zero intercept: other physics?

Slope vs centrality

Y. Burnier, D. E. Kharzeev, J. Liao and H-U Yee, arXiv:1208.2537v1 [hep-ph].

Similar trends between data and theoretical calculations with CMW. UrQMD can not reproduce the slopes.

Beam Energy Scan

Similar trends are observed for different beam energies down to 19.6 GeV. Below 19.6 GeV, more statistics are needed.

U+U

Similar pattern and magnitude seen in U+U collisions.

Alternative interpretation: LCC

- Clusters with low p_T have particles more separated in η than high- p_T clusters.
- v_2 increases with $p_{\rm T}$.
 - \triangleright η dependence of v_2 weaker than what this paper used
 - $\blacktriangleright \text{ mean } p_{\text{T}} \text{ in data is constant vs } A_{\text{ch}} \text{ (no 2nd effect)}$
 - ➤ the LCC effect estimated to be 10 times smaller than data

Δv_3 slope

Local charge conservation may introduce A_{ch} dependence of $\Delta v_2(\pi)$. Then one should see **slope-for-\Delta v_3 / slope-for-\Delta v_2 \sim v_3/v_2** (Bzak & Bozek PLB 726 239 (2013)). Our measurement for Δv_3 indicates that such mechanism alone cannot explain data.

Alternative interpretation: μ_I

Y. Hatta, A. Monnai, B.W. Xiao, arXiv:1507.04690v1

- Δv_2 and A_{ch} are linked with μ_I
- reproduce centrality and beam-energy dependence of r
- predict a similar Δv_3 slope as LCC (previous slide)
- predict a negative kaon slope

Kaon

With the same electric quadruple of QGP upon chemical freezeout, CMW expects a similar/weaker effect for kaons (Y. Burnier, D. Kharzeev, J.g Liao, and H. Yee, PRL 107 052303)

What we learned so far

- Charge asymmetry dependece of pion v_2 has been observed.
 - $v_2(A_{ch})$ showed opposite slopes for π^+ and π^-
 - similarity between data and calculations with CMW
 - similar centrality dependence from 200 GeV down to 19.6 GeV
 - confirmed with UU
 - finite slopes for kaons, with similar/smaller magnitudes
- On the other hand
 - UrQMD and AMPT (w/o CMW) showed no such effects
 - Δv_3 results consistent with zero
- Further systematic checks to do
 - acceptance effect

Outlook: Isobars

- Isobars are atoms (nuclides) of different chemical elements that have the same number of nucleons.
- For example, ⁹⁶₄₄Ruthenium and ⁹⁶₄₀Zirconium:
- Up to 10% variation in B field

	⁹⁶ 44Ru+ ⁹⁶ 44Ru	VS	⁹⁶ 40Zr+ ⁹⁶ 40Zr
Flow		~	
CMW		>	
CME		>	
CVE		=	

Isobars: $\Delta v_2(A_{ch})$ slope

- The slope parameter is also expected to differ
- With 1.2B events, the ratio is 1σ above 1
- Need more statistics

Backup slides

Isobars: B field

- Which B quantity is sensitive to the charge separation?
- The ratio is similar in term of ~ B^2 for 20-60% collisions
- B•cos($2\Delta \phi$) may be more realistic, with a bigger difference
- We use B_y for simplicity 1.30 1.25 1.25 1.20 1.15 1.10 1.05 • B_y • B_y • $B \cos[2(\psi_B - \psi_2)]$ • A = 2000 eV

Multi-component Coalescence (MCC) + Quark Transport

 $X_{d^T} - X_{u^T}$ vs Charge Asymmetry

30